Tag Archives: certficate

SSH certificates together with hardware keys (smartcard/yubikey)

We have showed how to use SSH certificates and SSH CAs, we have also showed how you can use the yubikey to store you SSH keys. This article will describe how to combine these two features.

First of all you need to have a yubikey set up with some RSA/ECDSA keys. Then find out the public part of you key:

% ssh-keygen -D /usr/local/lib/opensc-pkcs11.so
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCHn4jSqvNLn5NtUxqlAlm1Qj1tlunb0PjBsItmmesquULAM5oqVYmwJ+bmXpDlzgeeIbl1lf3aUTsXCs6My8mkIUwwN+3a5AJ8MA18Bzzx/qIpxe2N/nZ61e03ua5B6SjpfxAAC6i3DPHU6kUSy26sXhfx14y6abWlrwhXaILsTogz2sOganS44au+nSpa35xwMxG5vehkRkYe6vQvvIDFeMhy61DAJGOcGeCbXTfJB9yYwAgOEqTvHDBfbTrHhmnUu82/JV6twY4/tdgrjFxGE3/JsRnoP3lBCoLQR+Uxs3mV7pFelQj/8bZKVsjdzqH9AYWpvIQTJGuwAmyOk61V

This public key should be handed over to your systems administratior (probably yourself in this case) for signing. In return you will get a OpenSSH certificate file that looks sort of a public key but a bit longer.

Now the “tricky” part comes. When you have your public key in ~/.ssh/id_rsa.pub ssh will automatically look for a certificate file called id_rsa-cert.pub. But since we are going to use the smartcard/yubikey to handle our key it will not be visible in ~/.ssh.

First give your certificate a reasonable name like ~/.ssh/yubikey-cert.pub. Then we could tell ssh to combine the two.

Me most basic way is then to just specify the options you need on the command line:

% ssh -o PKCS11Provider=/usr/local/lib/opensc-pkcs11.so -o CertificateFile=~/.ssh/yubikey-cert.pub peter@torus
Enter PIN for 'PIV_II (PIV Card Holder pin)': 
[torus:~] peter>

If you want to use this permanently you can of course put the options in ~/.ssh/config instead it should look something like this:

PKCS11Provider=/usr/local/lib/opensc-pkcs11.so
CertificateFile=~/.ssh/yubikey-cert.pub

A third option if you are using the ssh-agent (like me) you could first add the card to your agent:

% ssh-add -s /usr/local/lib/pkcs11/opensc-pkcs11.so
Enter passphrase for PKCS#11: 
Card added: /usr/local/lib/pkcs11/opensc-pkcs11.so

and the specify the cert-file either on the command line or in ~/.ssh/config

% ssh -o CertificateFile=~/.ssh/yubikey-cert.pub peter@torus
[torus:~] peter>

Now you should be able to combine ssh certificates and yubikeys/smart cards

Scalable access control using OpenSSH Certificates

Background

I’ve been using OpenSSH certificates for some time now. They are very handy if you have a bunch of machines you want to trust, or a bunch of machines that shoud trust you.  It’s very effective to trust just one host CA in order to trust all servers with certificates signed by this CA. Or the other way around, have your personal public key signed by a user CA and then be automatically trusted by all servers that trust this CA. But if you working together with alot of people let say within an organisation this becomes problematic pretty soon. Maybe your frontend people should only have access to webservers and database people to the database servers and so on. The solution to this is the little known flags AuthorizedPrincipalsFile and AuthorizedPrincipalsCommand in sshd_config.

OpenSSH Certificates and principals

Lets start with the certificates and the principals within these certificates. In order to make this work I would suggest to use principals within the certificates that are closely tied to the person using it, their company wide username for example. If different keys have different access leves (lets say because on of them are stored on a physical secure element/smart card) it is good to include this kind of information in the principal, according to some standard you make up. Let say I use yubikeys to store my private keys I could have principals like peter_file and peter_physcial. These are easily parsable and  connected to a physical person.

Please note that there could be other access schemes where role is more important that how the key is stored, then role could be a better option for the principal suffix. But please note that if you burn the role into the certificate that person will need to have the current certificate revoked and have a new one issued if the role is ever changed. I will discuss a better way to handle this later.

Another option is to have multiple principals in the same certificate (ie peter,webmaster,root) but this also gets cumbersome when privileges and roles start to change over time.

AuthorizedPrincipalsFile

One solution to this problem is the configuration option AuthorizedPrincipalsFile in sshd_config. With this option you tell sshd where to look for a list of principals valid for a certain user. I looks something like

AuthorizedPrincipalsFile /etc/ssh/%u_principals

When someone tries to log in as peter sshd will check my certificate for validity and then look for valid principals in the file /etc/ssh/peter_principals. sshd expects this file to contain one valid principal per line and optionally preceded by extra options using the same format as the authorized_keys file. (ie from= and command=). This is flexible enough. I can now give multiple principals (or physical persons) access to a specific account by changing a file. I can also restrict access to certain hosts or create force commands for specific principals.

One use case for this could be a webserver where multiple principals(persons) should be able to use the “webmaster” account but at the same time the test/build system should only be allowed to run a certain commands to publish successful builds. Lets say that the account name is www, then the /etc/ssh/www_principals could look something like this:

peter
erik
from="buildserver.corp.com" command="/bin/publish_website" buildserver
from="guestcomputer.corp.com" guestworker

Please note: If you are really concerned with security, maybe you have given a certificate to a external partner or something, I would suggest to burn the from and command attributes into the certificate. In this way they will never be overridden by some configuration at the server side. The downside is that you will need to produce a new certificate if something changes.

If you have a pretty static setup and/or a decent configuration manager/orchestration tool this could be enough. It gives full flexibility on who should be able to access what, and how. But in the long run it could be tedious to manage all the principal files. This is where the AuthorizedPrincipalsCommand comes in to the picture.

AuthorizedPrincipalsCommand

This works exactly the same as AuthorizedPrincipalsFile but instead of a static file sshd will run a command followed by some options (basically the username that tries to log in) that will generate the principals file dynamically. This gives you a lot of options. Probably the most straight forward one is that you now can have a single ACL file for you whole environment and just let the command read it and produce a host and user specific principal file. One very simple example could look like this:

# Principal(person) user     host
erik                www      webserver.corp.com
peter               www      webserver.corp.com
guestworker         www      webserver.corp.com

peter               db       database.corp.com
erik                db       database.corp.com

Of course this file could be expanded to include more information and more options but this gives a example on how it can be done.

Other backends

But I think the real power in the AuthorizedPrincipalsCommand is that you now can use whatever backend you like and just have the principals command be a wrapper for this backend which could be some Active Directory, LDAP or whatever you might have at your organisation. This makes it possible to use existing infrastructure and still be able to use ssh certificates which I think is a real killer feature in OpenSSH.

If you have some ideas to improve this concept or an questions, please leave a comment.

Use a smart card or HSM to securely store your SSH CA keys

Depending on the use case, SSH CA keys can be extremely sensitive. Possession of the private key gives you the ability to sign new certificate for arbitrary usernames that will grant access to all machines where this CA is trusted. This is why you should keep your CA keys very safe, preferably offline and of course encrypted (password protected).

One big problem with digital encryption keys is that it is extremely difficult to find out if you lost control over they keys. If they where copied you have no way of finding out. This is where hardware tokens comes in. If you can be sure that the key will never leave the hardware token, you have a better chance of knowing when they keys are lost or stolen.

OpenSSH have support for storing keys onto hardware tokens that talk PKCS#11 such as smart cards and hardware security modules.

If you want to store your personal SSH key on a smart card you can read more about that here: Using Smart Card enabled yubikey for ssh authentication in FreeBSD

Since a SSH CA is just a regular SSH key they can also be stored on smart cards. But there is a few subtle differences in how you use it. First of all you need a token with a RSA key present. There is no option in OpenSSH to ask for a specific key stored on the token, instead we specifiy the public key that matches the private key we want to use. Lets download the public key from the token:

$ ssh-keygen -D /usr/local/lib/opensc-pkcs11.so
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCOvhEqFq9Ualp1iYiNs0JFs3MgvGU+By/VvyW4qkymW+w/MmHAaHl+/UFnE+kgXChdYHaGEVxxGi6dQlSq+1ZKAWPJsOEbkysK6cgjgvP21gVNjL62TlQz+QfGF82mv0hfSGXQrZQR7VDs+6xJOe3S/0i1HvnnRTdR2v9QSJzd2EWNLmUcPy7+4x4rEB11G0oPt+Xyx60WaleJctwJHHhJS/jqHdvuf7HO6MS/EQn2NTnwIjChlmm2kUT7obnev/r6uEwz87NubnYJUrYImRDMafjS9taq8l7y33ydT00QHEI76kmrSSi7hTfmxUgStQWuQ2mq10YEVd8kZ2sqmC3N

We put this into a file, let say ssh_ca.pub. Now we are ready to start using the token for certificate signing.

$ ssh-keygen -s ssh_ca.pub -D /usr/local/lib/opensc-pkcs11.so -I key_id wack.pub 
Enter PIN for 'Framkant HSM Test (UserPIN)': 
Signed user key wack-cert.pub: id "key_id" serial 0 valid forever

To look at the certificate we can use ssh-keygen.

% ssh-keygen -L -f wack-cert.pub 
wack-cert.pub:
        Type: ssh-rsa-cert-v01@openssh.com user certificate
        Public key: RSA-CERT SHA256:AtPyAu1DL5cFruTo9XnsVz7tdec7xF9SbpX8DzsQrbs
        Signing CA: RSA SHA256:Pbdx6TAvXvwZTKQVMRYWsWYPomw6AxBVoqbtXgy9pfs
        Key ID: "key_id"
        Serial: 0
        Valid: forever
        Principals: (none)
        Critical Options: (none)
        Extensions: 
                permit-X11-forwarding
                permit-agent-forwarding
                permit-port-forwarding
                permit-pty
                permit-user-rc

In a real life scenario I would recommend against this kind of certificate. Give it some validity and specify principals.

Two nice affordable options for hardware tokens are the Yubikey and the Smart Card HSM

Setting up a SSH Certificate Authority (CA)

Are you managing a couple of machines over ssh and have begun to feel frustrated about the key management? Find it tedious to distribute your public key to every machine you want to administer? Well, there is a simple solution, that does not include LDAP or some other central authentication server. A little known fact is that OpenSSH have support for both server and client certificates (not x509) since version 5.4. These can be used to set up a trusted Certificate authority on every server once and for all.

This is a very useful tool in environments where server access are harmonized (Where the same set of users should have access to all servers).

The other part is the signing of host keys. This solves the problem of having to manually check and verify the host key fingerprint every time you connect to a new server. If the server key is signed by a CA that you choose to trust you will not be asked to verify the fingerprint. If you have some configuration orchestration like Puppet you can have the puppetmaster create the host certificates on the fly.

From the release notes of OpenSSH 5.4:

* Add support for certificate authentication of users and hosts using a
   new, minimal OpenSSH certificate format (not X.509). Certificates
   contain a public key, identity information and some validity
   constraints and are signed with a standard SSH public key using
   ssh-keygen(1). CA keys may be marked as trusted in authorized_keys
   or via a TrustedUserCAKeys option in sshd_config(5) (for user
   authentication), or in known_hosts (for host authentication).

Creating CA keys
First of all I strongly recommend that you create separate CA keys for hosts and users for security reasons.

The CA keys are just regular ssh keys, you can create them like this:

$ ssh-keygen -a 256 -o -t rsa -b 4096 -f user_ca
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase): 
Enter same passphrase again: 
Your identification has been saved in user_ca.
Your public key has been saved in user_ca.pub.

$ ssh-keygen -a 256 -o -t rsa -b 4096 -f host_ca
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase): 
Enter same passphrase again: 
Your identification has been saved in host_ca.
Your public key has been saved in host_ca.pub.

Securing the private key
Since we are in the process of essentially giving one ssh key access to all of our severs we want keep the private key used for certificate signing very secure. The absolute minimum is to have the key encrypted (password protected). But other than that you should also enable KDF which you can read more about here. I also recommend that you store your keys offline and only have them mounted to a system when you use them. One way could be a encrypted partition on a USB drive, but have two of them since USB drives have a tendency to fail.

Another way to secure your keys is to have them stored on a hardware token, you can read about that here.

Singning your ssh key
First of all you need a regular ssh key which you create with ssh-keygen. Then we can sign this key and create a certificate. This is also done with ssh-keygen:

$ ssh-keygen -s /path/to/ca_key -n peter -z 1234 -V +52w1d-I key_id /path/to/user_key.pub
Signed user key user_key-cert.pub: id "peter_cert" serial 1234 for peter valid from 2016-10-09T22:23:00 to 2017-10-09T22:24:57

The file user_key-cert.pub can now be used together with your private key to access machines that accept the user_ca.pub.

To look at the newly created certificate run:

% ssh-keygen -L -f user_key-cert.pub 
wack-cert.pub:
        Type: ssh-rsa-cert-v01@openssh.com user certificate
        Public key: RSA-CERT SHA256:AtPyAu1DL5cFruTo9XnsVz7tdec7xF9SbpX8DzsQrbs
        Signing CA: RSA SHA256:8PYQAJojSknTl3BqgBkFKigmaufDhL/7d8zYUNFm7Po
        Key ID: "peter_cert"
        Serial: 1234
        Valid: from 2016-10-09T22:23:00 to 2017-10-09T22:24:57
        Principals: 
                peter
        Critical Options: (none)
        Extensions: 
                permit-X11-forwarding
                permit-agent-forwarding
                permit-port-forwarding
                permit-pty
                permit-user-rc

Singning host keys
The signing of host keys is done exactly as above, the only difference is that you add -h and the value given to -n should be the hostname.

Configure sshd
To tell sshd to accept key signed with your newly created ca you just need to upload the user_ca.pub and add one line to sshd_config. To tell the server to provide a host certificate to the client you need to add one line per key type to the configuration.

TrustedUserCAKeys /etc/ssh/user_ca.pub
HostCertificate /etc/ssh/ssh_host_rsa_key-cert.pub
HostCertificate /etc/ssh/ssh_host_ecdsa_key-cert.pub
HostCertificate /etc/ssh/ssh_host_ed25519_key-cert.pub

and restart sshd.

Configure the client to accept host certificates
To accept host certificates signed by the host_ca you need to add a line to your known_hosts file.
Its just @cert-authority * < public key >

It should look something like this:

@cert-authority * ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQC3pcm4IJGw76YKZSrf7pZA6s3Hu9eRzKbyzKPgg5OkBWU9ztUz2e1bXtR0UDqQKuOUx+ZDx6wmR3rVRM/BhYt1oeAv6rhxNRW2XPiakpn3EzuEWlbp68QRY8p+k6gjy7cnvF2uyaP0R0Ov819tTMHkdS3Rn57m7pfFk+tuRKLjJnQN2g6uxT+PBJonTQr2XcS5oAzwjel1x7xLqmz0MMrE98uE0GaZHxf/hioXOHt1ihzTF+GPqZ31ZrR3GIWtFEKtvcroaiS25VIV9W39LfVh7RRZTh8oCrjcEdoeFKUKA1PpqblsJhqg1XU2/xa9CAKb6SHb7gwQ18nUaQ/Sk6qYJMgkwWUtXbwS1RIm1k5QlKk8VD4H10jyqiAUBC8SHfNxnqOwKe275AfOVc/iuh4F2NsrIuHfh8tno5LqWSP63D3gXpXXm/4j3Sop2NqNz6EIqoqj0HPIL21/SneJgWXS7xxV/ShgnLVGB0dsJf8PsCnsVt0s5thO22VvE/IVQ1KM/ac1lEafBeSZsuPiOfcIeZu9mm4DfuoyqaHmnV6yBguW6zb894IdcYXsrVnMy3Hp85gnymEZn/qfPJ+dhNbBAANgjWphz5ZaBKdrpgCESz8Ka9S6V7fXr2ikB21YiUKB7XuoPjDncOokSEHU0p5iMQjE+Le7K3nOTtokhrZjXw==

Revoking Certificates
This will be added later.

Publish certificate fingerprints in DNS (TLSA/DANE)

Ever had second thoughts on paying a certificate authority (CA) a lot of money to sign your web servers public encryption key to get a trusted certificate? With the birth of DNSSEC the need for this could fade away, at least partly. It is now possible to create a self signed certificate and post the signatures securely in DNS. This way there is a secure out of band method to check the validity of a certificate. There is a special record type for this called TLSA and you can read more about it in RFC 6698

The support for these records in todays browsers are very limited, but there is a plugin available for the most popular browsers called DNSSEC validator. With this plugin it is possible to get a green light, even with a self signed certificate.

If you run your own mail server it could be interesting to know that Postfix have support for TLSA records since a few versions back.

A TLSA record could look like this:

_443._tcp TLSA (3 0 2 4FB72400493E364A499B24CDC5E5715F
                      97543262CBCB90C8483C5AB3E8A37C9E
                      CC4E021C8C12B3E485CFF3A082348FE6
                      ED39EBBF2F812B3BA8857DBB1C96AFF0)

_443._tcp tells us that a certificate with this sha-512 hash should be handed to us if we connect to tcp port 443.

There are three options before the hash. The first option defines “certificate usage”, the second “TLSA selector” and the third is basically hash type. The fourth field is the actual hash of the certificate. In the above example we have a sha-512 of the full certificate of a “Domain-issued certificate”. Please read more about this in the RFC (section 7).

Using the *nix command host the fetch this record looks like this

> host -t tlsa _443._tcp.framkant.org.
_443._tcp.framkant.org has TLSA record 3 0 2 4FB72400493E364A499B24CDC5E5715F97543262CBCB90C8483C5AB3 E8A37C9ECC4E021C8C12B3E485CFF3A082348FE6ED39EBBF2F812B3B A8857DBB1C96AFF0

It is pretty easy to find out the hash of a certificate using openssl. The following command gives us the sha512 hash of a certificate from file.

> openssl x509 -noout -fingerprint -sha512 -in framkant.crt | tr -d :

Remember that for this to have any effect on your security or your ability to have self signed certificates you need to have DNSSEC up and running for your domain. Please have a look at my article about OpenDNSSEC if you run your own authoritative dns server.